Posted on June 27, 2014 @ 08:00:00 AM by Paul Meagher
As mentioned in my last blog, The Future in 2050, I am reading Reinventing Fire (2011) by Amory Lovins
which discusses how the energy transformation from fossil fuel energies to renewable energies will play out between now and 2050. One of the major areas where the transformation will occur is in the area of
transportation which accounts for the majority of our current fossil fuel usage (with buildings, industry, and electricity generation being the 3 other main areas).
So what might our cars look like in 2050? According to Amory, something like the new BMW i3 which was just released into North America in May 2014.
A more important question than what it looks like on the outside will be what is made off. Here the BMW i3 is currently leading the pack because it is 1) commercially available, and 2) made of advanced carbon-fiber composites that are stronger than steel and significantly lighter than steel. These advanced carbon-fiber composites are used to construct the frame in order to make the car much lighter than current electric vehicles. It is considered an "ultralight" vehicle (although not nearly as light as the Volkswagen XL1).
When you can make a lighter vehicle based upon advanced composites then it means you can use smaller batteries to power it and get more efficiency at the same time. The smaller batteries in turn lead to a
lighter vehicle which opens up other avenues for making powertrain components lighter because they bear less stress. We are still in the early stages of this revolution in ultralight vehicle technology so it is difficult to imagine how light our vehicles will be in the year 2050. The lightness of the vehicle, however, will provide the basis for economical and efficient vehicles run purely off electricity and fuel cells and not reliant upon fossil fuels for powering them. So the transformation away from fossil fuel energy to renewable energy in 2050 will involve a transition to significantly lighter vehicles made possible by advanced composites that will replace steel as the primary structural component in our vehicles.
Some reviews of the BMW i3 miss the point entirely of why this vehicle matters. They evaluate it according to traditional driver metrics like handling, looks, power, interior space and so forth. You have to look at
the structural makeup of the vehicle to see why it matters.
The major factor holding up more widespread deployment of advanced composites is the lack of manufacturing capacity to produce these composites. Once the supply is more readily available then we can expect to see more widespread deployment of vehicles with ultralight structure and components. Again, BMW is leading the way on developing the manufacturing capacity to produce these composites. The Wikipedia page on the BMW i3 discusses the current state of BMW's carbon-fiber manufacturing efforts:
BMW is manufacturing carbon strands that form the basis of the i3's carbon-fiber reinforced plastic bodywork at a new US$100 million plant built in Moses Lake, Washington, using raw material shipped from Japan. This location was selected to take advantage of the abundant hydroelectric power available in this U.S. region because carbon-fiber production requires considerable energy and would otherwise emit much carbon dioxide. Electricity in this region also costs about one-seventh of what it costs in Germany, providing a financially beneficial reason for the Moses Lake location. The carbon fiber is then shipped to Landshut, Germany, where the carbon-fiber reinforced plastic parts are fabricated, and the vehicle assembly line is located in Leipzig.
As of February 2014, BMW was producing an average of 70 cars a day, about half the planned production. The lower production output is being caused by a high defect rate in the carbon parts. The company plans to invest about €100 million in the production of carbon parts in order to solve the supply problems. According to BMW, there were 11,000 orders globally as of January 2014, including 1,200 from U.S. customers. As a result of high demand and the slow production rate, delivery waiting time extends until September 2014.
So large investments are beginning to made in "light weighting" future automobiles and once the manufacturing capability for advanced composites is less buggy and more available, we can expect to see more components of the vehicle becoming lighter, battery systems becoming correspondingly lighter, powertrains becoming lighter and so on. There are some nice positive feedback loops that happen once you start developing lighter and lighter vehicles with structural strength equal to or greater than current automobiles.
Getting cars off fossil fuels and onto electricity and fuel cells will be an important component of the energy transformation between now and 2050 but it still does not eliminate fossil fuels from the equation if our power plants are still burning fossil fuels to create electricity. Obviously, the expectation is that power generation will come almost exclusively from renewable energy sources in 2050 due to the increasingly favorable economics of renewable energy production and islandable microgrid technology that is expected to come on stream by then.
The energy transformation between now and 2050 will be a disruptive time for the energy industry as new players emerge and new renewable and alternative energy based technologies displace fossil fuels as the motive power of the economy. Fossil fuels will not disappear, but they may be reserved for making products like advanced composites, asphalt, plastics, etc.. because they are considered too valuable to be burned.
There are tremendous opportunities for entrepreneurs and investors involved in the great energy transformation that is now unfolding. Rocky Mountain Institute is playing a leadership role in these developments:
|